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Statistics and scaling in one-dimensional disordered 
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Abstract. We present a new calculation of the statistical cumulants of -In\t(  ’ and 0 where 
t = 1 t /  exp(iO) is the transmission of aone-dimensional (ID) disordered system. We find that 
both variables are normally distributed in the long-length limit and that in general the 
distributions obey a two-parameter scaling. However, it does not follow that the distributions 
of ( t l*or  l/lt(*arelog-normal. We find that lt12isneverlog-normalwhile 1/1f~*issoonly 
for weak disorder. For the ID Anderson model we show that there is a crossover to a single- 
parameter scaling in the weak-disorder limit. 

1. Introduction 

Much of the present unL2rstanding of transport in disordereL systems is based on the 
scaling theory of localisation [l], predicting as it does the existence of a mobility edge in 
three dimensions ( 3 ~ )  with a critical exponent of unity and that all the states in ID and 
2~ systems are localised by arbitrary disorder. The theory is crucially dependent on a 
single-parameter scaling assumption embodied in the definition of the beta function 

d In g/d In L = P(ln g). 

Here g is the dimensionless conductance. However, as is now widely appreciated 
equation (1) cannot be correct as it stands because it ignores fluctuation effects. The 
basic problem is that in the absence of inelastic effects the conductance of a disordered 
system is sensitive to the exact microscopic arrangement of the impurities. In the 
localised regime the fluctuations in g diverge exponentially as the system size increases, 
and even in the metallic regime there are the so-called universal conductance fluctuations 

The lack of any self-averaging of g prompted detailed studies of ID systems, which 
showed [3-131 that the relevant scaling variable is ln(1 + R ) ,  R being the dimensionless 
resistance, and that this variable has a normal distribution in the long-length limit. Since 
a normal distribution is determined by two parameters, the mean and the variance, this 
implies a two-parameter scaling for the distribution of ln(1 + R )  casting doubt on the 
single-parameter scaling theory unless some relation can be found between the mean 
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and the variance of ln(1 + R). Just such a relationship has been found for the weak- 
disorder limit of the random-phase model [12] and for the Gaussian random potential 
model [5,  111 

var[ln(l + R)]  = 2(ln(l + R)).  (2) 

As we shall see below this result also holds under certain conditions for the Anderson 
model. However, in general the Anderson model obeys a genuine two-parameter 
scaling. 

In this paper we approach the problem through a systematic calculation of the 
statistical cumulants of -In 1 t I * where t is the transmission coefficient of a ID disordered 
system. We find that -In 1 t I * is normally distributed in the long-length limit and obeys 
a two-parameter scaling, reducing to a single-parameter scaling only under certain 
conditions. However, the real value of our approach presents itself in the calculation of 
the higher cumulants which allows us to determine how accurate the normal approxi- 
mation actually is. We find that the positive moments of 1 t I * never agree with the log- 
normal distribution for It1 *, and the negative moments do so only for weak disorder. 
The implications of this result for the distributions of conductance and resistance are 
discussed in the conclusion. We also derive the asymptotic form of the distribution of 
the phase o f t  and find that this always obeys a two-parameter scaling. 

2. Scaling of the distributions 

2.1. A general expression for the cumulants 

In this section we derive an expression for the statistical cumulants of -1nltl * and 0 
where t = / t i  exp(i0)  is the transmission coefficient for waves travelling through a ID 
disordered system and from this deduce the asymptotic form of the distributions of both 
quantities. We describe the scattering properties of the system by a transfer matrix T 
which relates incident- and reflected-wave amplitudes at the left (a+ and a- respectively) 
to those at the right (b ,  and b-)  of the system. 

r') = T("'). a -  
b-  

The transfer matrix T is a product of transfer matrices 
L 

T = ~ M ,  
n = l  

(3) 

(4) 

where M, n = 1, . . . , L are independent random matrices with some probability dis- 
tributionp(M). If the system is time-reversal symmetric then T has the explicit form 

where t and r are the amplitude transmission and reflection coefficients respectively. 
The first step is to write for positive integer N 
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[ t* ] -N = [l, 01 8 .  . . [ l ,  O]T C3. . . T(i) 8 .  . . (i) (6) 

where each direct product is taken N times. Equation (4) generalises to 
L 

T 8  . . .  T =  nM,@ . . .  M,. (7) 
n = l  

Equation (6) can be considerably simplified by noticing that any direct product of N 
identical matrices decomposes into independent subspaces according to the irreducible 
representations of the permutation group of order N [lo]. For our purposes here it will 
be sufficient to notice that any symmetric vector, U, that is a vector whose components 
have the property that 

(8) - 
U j l . . . j N  - U P ( j 1  . . . j  N )  

where P is any permutation of the N indices, remains symmetric after multiplication by 
(7). Since both projection vectors in (6) are symmetric their evolution under repeated 
multiplication is confined within the subspace of all symmetric vectors. To take advan- 
tage of this we must first choose a set of orthonormal basis vectors for the symmetric 
subspace. The set of vectors {u(i) : i = 0, . . . , N }  with components 

{ 9 ! ( N  - l)!/N!)1’2 if j ,  + . . . j N =  N + i  

otherwise 
u(i)j , .  . . j N =  (9) 

and each j = 1 or 2 is easily shown to be such a basis. We then define a symmetry-reduced 
transfer matrix X(T, N) with elements 

min(r.1) 

XI , ]  = O(i)T@. . T U ( j )  = (N-rCj-k”JCI-krCkJCk)”2 
k = O  

x T ~ , ~  N - i - ~ + k  T 1,2J - TZ. I - TZ, 2 (10) 

X(T, = II X(Mn , (11) 

( i t l - 2 N )  = [wT@ w ~ ] ( X ( M , N ) @ X ( M * , N ) ) ~ [ W C ~ W ] .  (12) 

It is easily shown that X has the usual multiplicative property of a transfer matrix 
L 

n = l  

Taking a further direct product allows us to construct the average 

Here w is a column vector with components wl = 6,,o: M* is the complex conjugate of M 
and angular brackets indicate an average over the distribution p(M). 

To proceed further we need to continue (12) analytically in N .  Kirkmann and Pendry 
[lo] have shown in a previous paper that this can be achieved by generalising the 
definition of the X matrix. We analytically continue the binomial coefficients using the 
gamma function and allow the matrix indices to run over 0 < i, j S m. This defines the X 
matrix for any N in the complex plane. We can see that the continuation is consistent 
with the previous exact result for the positive integer moments of l / t  by noticing that 
the matrix becomes block diagonal when N is a positive integer or zero 

However, for a detailed justification of the continuation procedure the reader is referred 
to [lo]. 
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We can now obtain the cumulants of the distribution of -lnltl* from (12) by suc- 
cessive differentiation 

c, (-In I t I 2 ,  = (d " /d N " )  In ( 1 t 1 -2N) I (14) 
where c, is the nth cumulant. In the limit that L + 30 a simple expression for the cumulants 
can be found subject to certain conditions on the eigenvalue spectrum of (X 8 X). First 
we rewrite (12) in terms of the eigenvalues pm and eigenvectors of (X 8 X) as 

with 

g(N ,m)  = w T 8 w T I N , m ) ( m , N J w @ w .  (16) 
Although the eigenvalue spectrum depends on the form of p(M), some general points 
can be made. For N < 0 the strict bound 0 6 ( 1  t 1 - 2 N )  S 1 implies that 1 pm(N) I < 1 for all 
m. At N = 0 w 8 wand wT 8 wT are eigenvectors of (X 8 X) with eigenvalue unity which 
we label as m = 0. When N > 0 we find for the Anderson model, to be discussed in Q 3 ,  
that I po(N) 1 > 1 and 1 pm(N) 1 < 1 for m > 0. This will not necessarily be true for an 
arbitraryp(M). Hence in the limit that L+ =we have, subject to these conditions, the 
simple expression 

c,(-lnlt/*) = (d"/dN") [Llnpo(N)  + lng(N,O)]lN=o. (17) 

2.2. The asymptotic distribution of -ln/t/' 

The most important feature of (17) is that all cumulants depend linearly on L in the long- 
length limit. This allows a simple form for the asymptotic distribution to be obtained. In 
the interest of brevity we set z = -In I ti * so that 

+e 

(It1 -2ia) = p(z) exp(iaz) dz.  (18) L 
Inverting the Fourier transform we find 

exp[F,(a) - az]  d a  
p(z) = ki J-+ 

where Fz(a)  is the cumulant generating function defined as 

F, (a )  = ln(exp(m)). (20) 
In the limit that L - 30 this can be expressed as 

I r+ i r  
exp[lf,(a) - az]  da 

p(z) = ziti J-+ 
where F,(a) = Lfz(a) and fz is independent of L. Evaluating the integral by the method 
of steepest descents we find 

p(z)+ ( ~ J G c ~ ) - ~ / ~  exp[-(z - c1)*/2c2]. (22) 
Thus -In 1 t 1 is normally distributed in the limit that L --.$ x with 
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Figure 1. The distribution of the renormalised variable z’ for various energies E and disorders 
W .  The symbols are the results of a Monte Carlo simulation for systems of length L = 1000 
obtained by sampling over 50 000 systems at random. The full curve line is the normal 
distribution expected on theoretical grounds. 

a d 2  
c2 = var z = L - In p O ( N )  , 

dN2 I N=O 
c1 = (z) = L - In po(N)  I N=O aN 

The distribution obeys a two-parameter scaling. 
In figure 1 we plot the distribution of the renormalised variable z‘  where 

z’ = (z - (z))/(var z)1/2 (24) 

is obtained from a Monte Carlo simulation of the Anderson model. This renormalisation 
allows different data to be displayed on the same graph. We see from this figure that in 
all cases z’ is normally distributed as required by (22). 

2.3. The accuracy of the asymptotic distribution 

In this section we discuss for what values of z and L the asymptotic form (22) is accurate. 
The range of z implied by (22) is [ -m ,  +so] whereas it is clear that in reality ( t l  G 1 

so that z 2 0. This contradiction is resolved by noting that in the limit L-  00 the 
integrated density over the unphysical region [--3o,O] is zero. At finite lengths the 
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integrated density will be almost zero if L 9 L,, where L, is the localisation length 
defined as 

L;' = lim (z)/2L. (25) 
L-.= 

It is important to realise that even if L % L, the asymptotic form (22) may not give the 
moments of 1 t 1 correctly. Let us consider the nth moment where n may be positive or 
negative; by definition 

+a 

( 1  tl 2 n )  = 1 p ( z )  exp( -nz) dz. (26) 

no = (z)/var z.  (27) 

--rr 

The integrand has a maximum in the unphysical region z < 0 if n 2 no where 

For the weak-disorder limit of the Anderson model no = 1. In fact for large enough 
positive n the moments approximated using the asymptotic form (22) exceed unity. We 
conclude that the positive moments of 1 t /  are never given correctly by the asymptotic 
distribution. 

This leaves open the possibility that the negative moments may be given accurately by 
(22). To determine that this is in fact the case we examine the saddle point approximation 
more carefully. The position of the saddle point an is determined by the condition. 

To find the root of this equation it is usual to truncatef,(n) at order a* giving 

This truncation is valid provided a0 4 1. 
The condition that a. 4 1 means that (22) is a bad approximation top(z) for values 

of z far from the mean, that is for values of z in the tails of the distribution. Since the 
negative moments are sensitive to the positive tail of p ( z ) ,  as is clear from the form of 
the integrand (26) when n < 0, we find that the,negative moments will in general be 
inconsistent with the normal approximation forp(z). The exception to this occurs when 
the higher cumulants of 2 are zero and fz (a)  actually terfninates at order a2. Then the 
restriction to a. 4 1 no longer applies and the positive tail is accurately Gaussian. In this 
case the negative moments of 1 ti * are consistent with the normal distribution for z .  

( d / d 4  [Lfz(a) - N Y = , o  = 0. 

a0 = ( 2  - C')/C2. 

(28) 

(29) 

2.4.  The phase distribution 

The cumulants of the phase distribution are evaluated in a similar manner to those for 
z starting from the expression 

In an exactly analogous analysis to 8 2.2 we find 
(exp(N0)) = [w' 8 wT](X(M, -iN/2) €3 X(M*, iN/2))L[w €3 w ]  

with 
(0) = L(d/dN) In P O W  lN=O 

and 
var 0 = L(d2/dN2) lnpn(N)IN=O 

where po(N)  is the m = 0 eigenvalue of the operator 
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Figure 2. The distribution of the renormalised phase 0’ for various energies E and disorders 
W .  The symbols are the results of a Monte Carlo simulation, the full curve is the normal 
distribution expected on theoretical grounds. 

(X(M, -iN/2) 8 X(M*, iN/2)). (34) 

In figure 2 we plot the distribution of the renormalised variable 0’ 

obtained from a Monte Carlo simulation of the 1D Anderson model with diagonal 
disorder. Again the renormalised results fit very closely to a normal distribution with 
mean zero and variance unity, as required by (31). 

Note that since 0 is normally, as opposed to log-normally, distributed we can say 
immediately that the higher moments of 0 are consistent with (31) only if the higher 
cumulants are zero. 

It is worth inserting a word of caution at this point. Like other quantities reviewed 
in this paper the phase distribution contains a wealth of subtleties in the fine structure. 
In particular the contribution of resonant states within the disordered region gives rise 
to structure in both the phase of reflection and transmission (they are closely related by 
time-reversal arguments) which is important in the theory of l/fnoise at surfaces. We 
shall not discuss these effects here but refer the reader to earlier papers: see [14-161. 
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3. Application to the Anderson model 

3.1. The weak-disorder limit of the Anderson model 

The Hamiltonian H for the Anderson model with diagonal disorder is 

Ea, = E n a n  - a,,l - a , - l .  (36) 
We suppose the site energies {E,: n = 1, L} to be independently and identically dis- 
tributed according to a distributionp(E) with ( E )  = 0. The transfer matrix for the model 
is given by (4) with 

where the wavenumber k is related to the energy E by 

and 
E - (E) = -2 COS k 

6, = ( E ,  - ( ~ ) ) / 2  sin k. (39) 

In the absence of disorder for 1 E 1 < 2, that is inside the band of the pure system, we have 

(40) - 6 am,,, eWm’-m). [(X(M, N )  @X(M*,  N))lmm,,nn, - m , n  

The zero-order eigenvalues are highly degenerate and in particular there is a large 
degeneracy of the eigenvalues at unity (m = m’). The introduction of disorder breaks 
this degeneracy. The new eigenvalues can be estimated from degenerate perturbation 
theory, and working to first order in var E we obtain a tridiagonal perturbation matrix 
ccz 

var E 
a ( N )  = I + ___ f i I ( N )  E2  -4 

where I is the identity matrix and fl‘ has elements (0 S j 6 x)  

Q;,, = N(1 + 2j) - 2j2 

Q;,,+l = ( N  - j )  (i + 1). 

Here we neglect extra degeneracy which occurs at rational k-values and which modifies 
the results only at E = 0. We return to this point later. 

The perturbation matrix is real symmetric and therefore its eigenvalues are real. At 
N = 0 we find as required the ,uo = 1 and that 

var E 
p m ( N = O ) < l -  m > 0. 

4(E2 - 4) (43) 

Using the weak-disorder result for the localisation length [8] this gives 

(pm / P O )  < ~ x P ( - L / ~ L  c )  (44) 

so that the central result for the cumulants (17) is valid provided that L % Lc. 
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Figure 3. The relationship between the 
mean and variance of z for various energies 
E and disorders W (W = 1, 2, 4,  5 ,  8, 10, 
12, 14). The figure shows the breakdown 
of single-parameter scaling for strong dis- 

0 0.6 1 . 2  1 . 8  2 .L orderrThese results are forenergies $thin 
(Mean z ) / L  the band of the pure system. 

Using (17) and expanding the logarithm to first order in var E we find 

var E d "  
c,(-lnlt12) = L-- P li (N) I N =  0 E2 - 4dN" (45) 

where &(N) is the relevant eigenvalue of a'. The first derivative of ~6 at N = 0 is easily 
shown to be unity. The higher derivatives are obtained numerically by truncating Cn' at 
various sizes and converging the derivatives against truncation size. Using this procedure 
we find 

var E var F 
(-lnltlL) = L- 

4 - E2 
_. - 

var(-lnltj') = 2L- 
4 - E2 

giving a direct relation between the mean and variance: 

var( -In 1 t i 2 )  = 2( -In 1 t i2 ) .  (47) 
This means that the asymptotic distribution of - In( t /2  is determined by a single 
parameter, (-In 1 tI2), in the weak-disorder limit. In figure 3 we test the range of validity 
of the single-parameter scaling method for the Anderson model with 

P(E)  = 1/w I & (  6 iw (48) 
by means of a Monte-Carlo simulation. We find deviations from (47) for disorders W of 
the order of twice the band width. This does not in itself imply a crossover to two- 
parameter scaling as it would be sufficient for a single-parameter scaling if all the results 
in figure 3 fell on a common curve. However, it is clear this is not the case and that when 
Lc is of the order of afew lattice sites there is a weak dependence on a second parameter. 

At E = 0 there is a well-known modification [ 10,171 to the result for the mean 

var E 
(-lnltI2) = 0.4569 1- 

4 - E2 (49) 

a result which can be obtained by considering (X) alone [lo] without the complication 
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A 
0 

m n\ 4 
0 0.6 1 .2  1 , e  2 

(Mean z I/L 

Figure 4. The relationship between the 
mean and variance of z for energies outside 
the band of the pure system and disorders 
W (W = 1-14). Here single-parameter 
scaling is not valid even in the weak-dis- 
order limit. 

I ,  

of a further direct product. The Monte-Carlo simulation indicates that the relationship 
between the mean and variance (47) still holds at E = 0. 

When I El > 2, that is outside the energy band of the pure system, we have 

[(X(M, N) €3 X(M*, N))]mm8,nn, = c 5 m , n c 5 m c , n g  exp[2ik(N - m’ - m] (50) 
since ik is now real. At  N = 0 the m = 0 eigenvalue is no longer degenerate and we find 
using non-degenerate perturbation theory that 

var E 
(-11tI2) = L(2ik - var(-lnlt/’) = 4 m .  

The absence of a direct relationship between the mean and variance implies a two- 
parameter scaling even for weak disorder, a result confirmed by the Monte Carlo results 
presented in figure 4. 

The analysis for the phase distribution follows similar lines. For I E I < 2 we find 

var E 
v a r 0  =jL-  

4 - E2‘  
(0) = kL 

This implies a two-parameter scaling of the @-distribution. When I El > 2 we find 

0 E <  -2 

n E > 2  
(0) = { 
var 0 = 0. (53) 

Here the fluctuations in 0 are quenched as the density of states tends to zero beyond 
E = +(2 + W/2) in accordance with the Saxon-Hutner conjecture, [18]. In figure 5 
these results are confirmed in a Monte Carlo simulation of the Anderson model. 

3.2. Weak-disorder results far  the higher cumulants 

For lE /  < 2  we find that c3(-lnlt12) and c4(-lnlt12) are both zero. For the higher 
cumulants we are not able to obtain convergence of the necessary derivatives against 
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Figure 5. The relationship between the 
mean and variance of 0’ for various ener- 
gies and disorders (W = 1-12), showing 
two-parameter scaling of the distribution. 

0 

the truncation size of the perturbation matrix a’. Nevertheless, we do find that the 
higher derivatives decrease with increasing truncation size suggesting that they are in 
fact zero. When 1 E I > 2 we find from non-degenerate perturbation theory that all higher 
cumulants are zero. This leads us to conjecture that to first order in the statistical variance 

c,(-1nlt12) = 0 n > 2. (54) 

With reference to the discussion of section 2 this implies that the negative moments of 
1 tI will be consistent with the normal distribution of -In It I in the weak-disorder limit. 

The higher cumulants of the phase distribution also appear to be zero, indicating 
that all the moments of 0 agree with (31) in the weak-disorder limit. 

3.3. Strong disorder 

Assuming that the form of the eigenvalue spectra is not radically altered for strong 
disorder, both -1n(tl2 and 0 should be normally distributed as L-, w for arbitrary 
disorder strength W. However, the result of section 3.2 that all higher cumulants are 
zero to first order in var E will probably be modified at higher orders. For strong disorder 
we therefore expect that the negative, in addition to the positive moments, of 1 t 1 and 
0 will be inconsistent with the asymptotic distribution. This has been shown explicitly 
for the negative moments in the very strong-disorder limit by a direct calculation [19]. 

4. Conclusions 

In conclusion we have found that in the long-length limit p (  -In I t I 2 ,  approaches a 
normal distribution, obeying in general a two-parameter scaling, but that the normal 
approximation is never accurate enough to allow calculation of the positive moments of 
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1 tl 2 ,  nor the negative moments except for weak disorder. In fact the positive moments 
are of the form [20] 

(lt12N) = A ( N ) [ ~ ( ( Y ~ W ~ I  ~ X P ( W  (55)  
quite at variance with the normal distribution for -1nltl2. Here A(N) is a known 
numerical factor independent of the disorder and the ai are parameters which depend 
on the disorder but which cannot in general be found analytically. 

The results of this paper concerning the statistical properties of 1 t I can be related to 
those of the conductance g and the resistance R through the relations 

g = R - l =  It1 . (56)  
This implies that p ( R )  is accurately log-normal, in the sense that the moments of R are 
consistent with the log-normal distribution, for weak disorder only. The conductance 
distribution p ( g )  is never accurately log-normal. 
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